
Designing scaffolds to support students in debugging e-textiles
Michael Schneider

Michael.J.Schneider@colorado.edu
University of Colorado Boulder

Boulder, Colorado, USA

Figure 1: Circuit Check’s User Interface (left) and a student debugging an e-textile project with Circuit Check (right)

ABSTRACT
My doctoral research focuses on the design of tools that scaffold the
debugging process for students crafting e-textiles, a type of physi-
cal computing where circuits are woven together with conductive
thread and textile fabrics. While this can be a creative medium for
children to learn and experience computing, they struggle with
locating errors in this mixed hardware/software environment - is
the LED not turning on due to a fault in the circuit, an issue within
the code, or some combination of the two? To address this issue,
my study will follow a Design-Based Research approach to investi-
gate and iterate on the design of debugging scaffolds. My primary
scaffold is Circuit Check, an interactive web-based debugger that
enables students to easily observe and test their hardware com-
ponents. Preliminary findings from classroom observations have
shown both the strong need for, and benefits of, Circuit Check’s
approach of supporting debugging through system exploration.

CCS CONCEPTS
• Applied computing → Education; • Software and its engi-
neering → Software testing and debugging.

KEYWORDS
debugging, e-textiles, physical computing, educational scaffolds

ACM Reference Format:
Michael Schneider. 2023. Designing scaffolds to support students in debug-
ging e-textiles. In Interaction Design and Children (IDC ’23), June 19–23, 2023,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IDC ’23, June 19–23, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0131-3/23/06.
https://doi.org/10.1145/3585088.3593925

Chicago, IL, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3585088.3593925

1 INTRODUCTION
Traditionally, students learn computer science topics through de-
signing and programming software within the virtual space of their
computer, but there has been growing interest in teaching students
programming through crafting physical computing systems [5, 9].
Topics such as conditional logic and loops are still covered, but in-
stead of interacting with digital artifacts on their screen, a student
creates a project that senses and interacts with the physical world.
A unique style of physical computing can be found in e-textiles
where instead of designing and constructing circuits with insulated
wires and breadboards, students sew electronic components into
fabrics with conductive thread[4]. While blending textile crafting
and electrical engineering enables students to create meaningful
projects, these e-textile projects can be tricky to debug [10]. Debug-
ging, the act of finding and fixing bugs (or errors), has long been a
challenge for students learning to program [12] but that challenge
is intensified in physical computing, where students struggle to
locate errors that can occur not only in their software but also in
their hardware [3, 5, 10]. Part of the the reason why it is so difficult
for students to locate errors comes from the naive approaches they
often employ in debugging.

Inexperienced students often apply a trial-and-error approach
to debugging where they will make changes to their code as they
evaluate it line-by-line [16]. But with these changes comes the
possibility of introducing new bugs [14], which must then also be
fixed. Now making mistakes while debugging is not necessarily a
bad thing.Mistakes are a normal part of the learning process and can
help highlight student misconceptions and provide an opportunity
to grow their debugging skills [12]. But this approach can become
problematic when a student loses track of haphazardly made edits,
becomes overwhelmed with the debugging process, and then stops

766

https://doi.org/10.1145/3585088.3593925
https://doi.org/10.1145/3585088.3593925
https://doi.org/10.1145/3585088.3593925
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585088.3593925&domain=pdf&date_stamp=2023-06-19


IDC ’23, June 19–23, 2023, Chicago, IL, USA Michael Schneider

trying to debug and instead wait for someone else to fix the bug
for them [14]. While some amount of struggle or difficulty can be
beneficial for learning [2], a balance must be maintained to ensure
that the amount of struggle a student experiences does not lead to
anxiety and/or abandonment of their project [1]. Researchers have
proposed different approaches to support students in overcoming
the challenges of debugging, from explicitly teaching debugging
strategies [13] to novel interactive software debugging tools [11].
But most of these interventions were designed around the needs of
students learning to write code, not those working to create with
physical computing systems like e-textiles [10]

Few tools are designed for developing and debugging e-textile
circuits [15] and while software tools for physical computing can
be adapted to e-textiles they are either designed for professional
engineers [6], or are simple but difficult, initially, for students to
correctly implement (e.g. proper placement of print statements
or selection of code to comment-out [7]). The paucity of tools
is problematic because in order to debug their e-textile project,
a student must be able to test and observe its components (e.g.
sensors, actuators, and variables). I have addressed this need by
creating Circuit Check, a web-based debugging tool that enables
students to easily observe and test their e-textile components while
also making it easier for teachers to guide their students through
the debugging process. The design and evaluation of Circuit Check
has been informed by qualitative research techniques, coupled with
informal observations of students crafting e-textiles and formal
classroom observations of teachers supporting students in crafting
e-textile projects.

2 RESEARCH QUESTIONS
RQ1 What are the design considerations for debugging tools in

the domain of e-textiles for supporting student exploration
of system behavior?

RQ2 What resources do teachers require to facilitate the debug-
ging process with their students, within physical computing?

3 INTERVENTION
When debugging, students often struggle with gathering the nec-
essary information to understand what is happening within their
e-textile system - what is the current reading for their light sensor
or is the microcontroller providing power to a given LED? Tradi-
tionally, in order to find this information a student would need to
modify their project’s code by either injecting new lines of code (e.g.
print statements to observe a sensor) or by removing existing lines
of their code (e.g. commenting out blocks of code to isolate and test
specific components). However, these traditional techniques are not
ideal for students or their teachers. Guiding a student who is new to
programming and physical computing through the necessary steps
of traditional debugging techniques can not only be time consum-
ing, but anytime modifications are introduced, there is the potential
to create new bugs [14]. These new bugs will in turn need to be
resolved, which only further increases the difficulty of fixing the
original bug. Circuit Check, Figure 2, has been designed to address
this issue by enabling students to observe live sensor readings and
test hardware components without requiring any code modifica-
tions. Instead, Circuit Check’s debugging features are embedded

into the student’s compiled program through a provided library
(Arduino) or extension (MakeCode). This means that at any point
in the development process, from initial draft to finalized project,
the student can evaluate their system with Circuit Check.

3.1 Debugging Scenario
Early projects students design often use an LED to act as a signal,
where the student’s program will turn the LED on or off based on
some condition - for example, a specific sensor value or range of
values being reached. To figure out why an LED won’t turn on, a
studentmust check for the presence of hardware and software faults.
To check for hardware faults, a student can pause their running
program, isolating the hardware from the software, and test if the
LED is physically able to turn ON (Figure 2 (Left)). To check for
logical errors in their software, a student can use Circuit Check
to observe a live sensor reading. As shown in Figure 2 (Right), a
student can select any of their system’s sensors and observe a live
readout of its data. In addition to viewing sensor data, the student
can watch and update their project’s variables - monitoring for
changes after each iteration of their forever loop or testing the
system by setting a variable to a specific value.

Figure 2: Screenshots of Circuit Check’s User Interface - (Left)
Testing an actuator to check for hardware errors, (Right)
Observing live sensor data and modifying variables to check
for logical errors in the software.

4 METHODOLOGY
The conceptual framework guiding my dissertation is grounded
in Dr. Warshauer’s Productive Struggles Framework (PSF) [17], a
framework for qualitatively analyzing teacher-student interactions
during moments of struggle in K-12 mathematics classrooms. Due
to key differences in the style of student-teacher interactions in
math versus computer science classrooms, PSF cannot be directly
mapped to the context of debugging. For example, when a teacher
supports a student struggling to answer a math problem the teacher
typically knows what solution they are working towards. In con-
trast, when supporting a student struggling with debugging the
teacher often does not know what bug or error the student needs
to find and fix. This in turn affects the type of struggles and re-
sponses that will occur in a debugging interaction. In a related
research project [8], I have assisted in analyzing the pedagogical
moves teachers use to support their students in debugging physical
computing systems. I plan to use this study to adapt the Productive
Struggles Framework for debugging, where instead of focusing on
the student’s cognitive load the focus will be on how a teacher’s
responses and actions support debugging with or debugging for a
student. By debugging for a student, a teacher can help a student
quickly overcome a challenging bug but this comes at the cost of

767



Designing scaffolds to support students in debugging e-textiles IDC ’23, June 19–23, 2023, Chicago, IL, USA

the student’s growth in debugging - they cannot learn to debug if
they are not given the opportunity to work through the debugging
process. To understand how student-teacher interactions during
debugging fit within this modified framework, I plan to collect and
analyze data from classroom observations and professional devel-
opment workshops with teachers, both will focus on creating and
debugging e-textiles.

5 RESEARCH TIMELINE
My dissertation consists of three observational studies, which focus
on (1) e-textile summer camp programs, (2) e-textiles integrated into
STEM classrooms, and (3) professional development workshops for
teachers covering e-textile curriculum.

Summer Camp Programs - Completed - RQ1
Summer ’21 and ’22: During the summer camp programs

I taught middle school aged students to craft e-textile
projects, which covered the basics of circuitry, sewing, and
programming. Serving as the teacher, I helped the campers
with debugging their projects by using early prototypes of
Circuit Check. From my analysis of the transcripts of our
debugging sessions, my personal notes, and images taken
of their projects, I found that the most pressing need for
the campers was to explore. Everything, from coding to
sewing, was new to them and they needed the opportunity
to play with their hardware components and see what they
could do. Based on this, I simplified both Circuit Check’s
UI and its supporting library to better ease students into
exploration while debugging and reduce the amount of
time spent learning how to use Circuit Check.

STEM Classrooms - In Progress - RQ1, RQ2
Fall 2022: I co-designed e-textile curriculum with two high

school STEM teachers that incorporated Circuit Check
for debugging. I collected observational data during its
implementation where the teachers taught the material
and I served as an additional support for debugging. The
data I collected includes video recordings of each class pe-
riod, audio recordings from the teacher and myself, photos
of student projects, and video recordings of my closing
interviews with each teacher.

Spring, Summer 2022: I have not yet analyzed the recorded
data. I am working on a plan with my adviser and disserta-
tion committee for analyzing the data and plan to complete
my analysis by the end of summer 2022.

Professional Development - Not Commenced - RQ2
Summer, Fall 2023: For the final stage of my dissertation

I plan to create and run professional development work-
shops to train K-12 teachers both in how to create e-textile
projects and integrate e-textiles into their existing curricu-
lum. I plan to cover debugging strategies and how to use
Circuit Check to guide students through the debugging
process.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1742081. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] Ashok R Basawapatna, Alexander Repenning, Kyu Han Koh, and Hilarie Nick-

erson. 2013. The zones of proximal flow: guiding students through a space of
computational thinking skills and challenges. In Proceedings of the ninth an-
nual international ACM conference on International computing education research.
67–74.

[2] Elizabeth L Bjork and Robert A Bjork. 2011. Making things hard on yourself, but
in a good way: Creating desirable difficulties to enhance learning. Psychology
and the real world: Essays illustrating fundamental contributions to society 2, 59-68
(2011).

[3] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed wires:
Investigating the problems of end-user developers in a physical computing task.
In Proceedings of the 2016 CHI conference on human factors in computing systems.
3485–3497.

[4] Leah Buechley, Kylie Peppler, Michael Eisenberg, and Kafai Yasmin. 2013. Textile
Messages: Dispatches from the World of E-Textiles and Education. New Literacies
and Digital Epistemologies. Volume 62. ERIC.

[5] Kayla DesPortes and Betsy DiSalvo. 2019. Trials and tribulations of novices work-
ing with the Arduino. In Proceedings of the 2019 ACM Conference on International
Computing Education Research. 219–227.

[6] Jan Dolinay, Petr Dostálek, and Vladimír Vašek. 2021. Advanced debugger for
Arduino. International Journal of Advanced Computer Science and Applications
(2021).

[7] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: finding, fixing and flailing,
a multi-institutional study of novice debuggers. Computer Science Education 18,
2 (2008), 93–116.

[8] Colin Hennessy Elliott, Alexandra Gendreau Chakarov, Jeffrey B Bush, Jessie
Nixon, and Mimi Recker. 2023. Toward a debugging pedagogy: helping students
learn to get unstuck with physical computing systems. Information and Learning
Sciences 124, 1/2 (2023), 1–24.

[9] Steve Hodges, Sue Sentance, Joe Finney, and Thomas Ball. 2020. Physical com-
puting: A key element of modern computer science education. Computer 53, 4
(2020), 20–30.

[10] Gayithri Jayathirtha, Deborah Fields, and Yasmin Kafai. 2018. Computational
concepts, practices, and collaboration in high school students’ debugging elec-
tronic textile projects.. In Conference Proceedings of International Conference on
Computational Thinking Education 2018.

[11] Amy J Ko and Brad A Myers. 2008. Debugging reinvented: asking and answering
why and why not questions about program behavior. In Proceedings of the 30th
international conference on Software engineering. 301–310.

[12] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon,
Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the literature
from an educational perspective. Computer Science Education 18, 2 (2008), 67–92.

[13] Tilman Michaeli and Ralf Romeike. 2019. Improving debugging skills in the
classroom: The effects of teaching a systematic debugging process. In Proceedings
of the 14th workshop in primary and secondary computing education. 1–7.

[14] David N Perkins, Chris Hancock, Renee Hobbs, FayMartin, and Rebecca Simmons.
1986. Conditions of learning in novice programmers. Journal of Educational
Computing Research 2, 1 (1986), 37–55.

[15] Irene Posch and Geraldine Fitzpatrick. 2021. The matter of tools: designing,
using and reflecting on new tools for emerging eTextile craft practices. ACM
Transactions on Computer-Human Interaction (TOCHI) 28, 1 (2021), 1–38.

[16] Iris Vessey. 1985. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies 23, 5 (1985), 459–494.

[17] Hiroko Kawaguchi Warshauer. 2015. Productive struggle in middle school mathe-
matics classrooms. Journal of Mathematics Teacher Education 18 (2015), 375–400.

768


	Abstract
	1 Introduction
	2 Research Questions
	3 Intervention
	3.1 Debugging Scenario

	4 Methodology
	5 Research Timeline
	Acknowledgments
	References

